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1. INTRODUCTION

Accurate determination of the thermal stresses induced in hot section
components remains one of the most difficult problems facing engine
design/analysts. There currently exists no rational analytical nor
numerical techniques which can effectively deal with this problem.
Analysts involved in hot fluid dynamics using the finite difference method
have little interaction with those engaged in thermal stress analysis where
the finite element method is dominant. However, the temperature
distribution in many structural components is strongly influenced by the
external hot gas flow, the internal cooling system of the comporent. and
the structural deformation. As a result, the only effective way to deal
with this problem is to develop an integrated solid mechanics, fluid
mechanics, and heat transfer approach.

In the present work, the boundary element method (BEM) is chosen as
the basic analysis tool principally because the definition of temperature,
flux, displacement and traction are very precise on a boundary-based
discretization scheme. One fundamental difficulty is, of course, that a
BEM formulation requires a considerable amount of analytical work, which is
not needed in the other numerical methods.

This report details progress made, during the period November 1987 -
November 1988 in a multi-year program cammencing in March 1986, toward the
development of a boundary element formulation for the study of hot fluid-
structure interaction in Earth-to-Orbit engine hot section components. The
primary thrust of the program to date has been directed quite naturally
toward the examination of fluid flow, since boundary element methods for
fluids are at a much less developed state.

During the first year, work focused on the completion of a

comprehensive literature review of integral methods in fluids, the



development of integral formulations for both the solid and fluid, and some
preliminary infrastructural enhancements to a boundary element code to
permit incorporation of the fluid-structure problem. In the second year,
emphasis shifted to the implementation and validation phases. Boundary
element formulations were implemented in two-dimensions for both the solid
and the fluid. The solid was modeled as an uncoupled thermoelastic medium
under plane strain conditions, while several formulations were investigated
for the fluid. For example, both vorticity and primative variable
approaches were implemented for viscous, incompressible flow., and a
compressible version was developed. All of the above boundary element
implementations were incorporated in a general purpose two-dimensional
code. Thus, problems involving intricate geometry, multiple generic
modeling regions, and arbitrary boundary conditions are all supported.
Further details can be found in Dargush et al (1986, 1987).

In the early portion of this past year, a number of significant
advances were made. First, two-dimensional integration schemes were
enhanced to obtain more accurate ocoefficients with somewhat less computing
effort. This improvement was found to be particularly beneficial for
incompressible flow, where the precise determination of the coefficients is
imperative. Secondly, both full and modified Newton-Raphson algorithms
were developed. This greatly improved the convergence characteristics of
the set of nonlinear equations governing viscous flow. Additionally, a
region-by-region reference velocity was introduced into the formulation to
shift the highly nonlinear portion away from the free stream and toward
obstacles and walls, where a more refined model is appropriate.

The combination of these advances permits the solution of a wide
variety of thermoviscous flow problems in the low to mbderate Reynolds

number range. Several examples are included in this report. However, at



higher Reynolds numbers, there is a need to get more of the physics of the
problem into the boundary element fundamental solution. Consequently, the
development of new convective fundamental solutions and integral
formulations has been the primary focus of our most recent efforts.

In the next section, a brief review of the applicable boundary element
literature is presented. This is followed by the development of integral
formulations for the solid in Section 3 and for the fluid in Section 4.
Several detailed numerical examples are presented at the end of each of
those two sections. In the fluids portion, development of the new
convective formulations is emphasized. The remaining sections then
summarize the progress achieved to date, and outline the work plan for the
next year. Tables and figures appear at the end of the correspohding

section, while references are provided in Appendix A.

2. LITERATURE REVIEW

Virtually nothing has appeared in the literature on the analysis of
coupled thermoviscous fluid/structure problems via the boundary element
method, although some work has been done on the fluid and solid separately.
In general, the solid portion of the problem has been addressed to a much
greater degree. For example, a boundary-only steady-state thermoelastic
formulation was initially presented by Cruse et al (1977) and Rizzo and
Shippy (1977). Recently., the present authors developed and implemented the
quasistatic counterpart (Darqgush, 1987; Dargush and Banerjee, 1988a,b),
which is presented in detail in Section 3. Others, notably Sharp and
Crouch (1986) and Chaudouet (1987), introduce volume integrals, to
represent the equivalent thermal body forces. A similar domain based
approach was taken earlier by Banerjee and Butterfield (1981) in the
context of the analogous geaomechanical problem.

An extensive review of the applications of integral formulations to



viscous flow problems was included in the previous annual report (Dargush,
et al, 1987), and will not be repeated here. Interestingly, only a few
groups of researchers are actively pursuing the further development of
boundary elements for the analysis of viscous fluids. The work reported in
Piva and Morino (1987) and Piva et al (1987) focuses heavily on the
development of fundamental solutions and integral formulations with little
emphasis on implementation. On the other hand, Tosaka and Kakuda (1986,
1987), Tosaka and Onishi (1986) have implemented single region boundary
element formulations using approximate incompressible fundamental
solutions. This latter group has developed sophisticated non-linear
solution algorithms, and consequently, are able to demonstrate moderately
high Reynolds number solutions. Mearwhile, as will be seen in Section 4,

the present work represents a significant advancement in the state-of-the-

art from both a formulation and implementation standpoint.

3. INTEGRAL FORMULATION FOR SOLIDS
3.1 Introduction
In the current section, a surface only time domain boundary element

method will be described for a thermoelastic body under quasistatic
loading. Thus, transient heat conduction is included, but inertial effects

are ignored. Formulations have been developed for three-dimensional, two-
dimensional and axisymmetric problems (Dargush, 1987, Dargush and Banerjee,
1988a,b), however, only the 2D plane strain case is detailed below.
Separate subsections present the governing differential equations, the

integral equations, and an overview of the numerical implementation.

3.2 Governing BEquations

With the solid assumed to be a linear thermoelastic medium, the

governing differential equations for transient thermoelasticity can be



written:
azuj o’y 20
(A+p) Py + - (32+2p) a — =0 (3.1a)
ia){j anan axi
oc ©_ 3_—"29 (3.1b)
-4 FE Xjan
where
u; displacement vector
e temperature
t time
X5 Lagrangian coordinate
k thermal conductivity
P mass density
Ce specific heat at constant deformation
A, n Lame's constants
a coefficient of thermal expansion

Standard indicial notation has been employed with summations indicated
by repeated indices. For two-dimensional problems considered herein, the
Latin indices 1 and j vary from one to two.

Note that (3.1b) is the energy equation and that (3.1a) represents the
momentum balance in terms of displacements and temperature. The theory
portrayed by the above set of equations, formally labeled uncoupled
quasistatic thermoelasticity, can be derived from thermodynamic principles.

(See Boley and Weiner (1960) for details.)

3.3 Integral Representations
Utilizing equation (3.1) for the solid along with a generalized form

of the reciprocal theorem, permits one to develop the following boundary



integral equation:

, = G , -F, , . (3.2
cBu(g)uB(c t) i [Ggo*tg X,8) - Py ug (X, £)1a5(x) )
where
a,p indices varying from 1 to 3
s surface of solid
ua.ta generalized displacement and traction
_ T
u, = [u1 u, o]
t =t t, ql"
e 'f1%529
6.q temperature, heat flux
GaB’FaB generalized displacement and traction kernels (Dargush,
1987,1988a)
Cap constants determined by the relative smoothness of s at &

and, for example,
t

‘ta = IGaﬁ (x,t; &, ) ta (x,7) dt
0

GaB

denotes a Riemann convolution integral.

In principle, at each instant of time progressing from time zero, this
equation can be written at every point on the boundary. The collection of
the resulting equations could then be solved simultaneously, producing
exact values for all the unknown boundary quantities. In reality, of
course, discretization is needed to limit this process to a finite number
of equations and unknowns. Techniques useful for the discretization of

(3.2) are the subject of the following section.



3.4 Numerical Implementation

3.4.1 Introduction

The boundary integral equation (3.2), developed in the last section,
is an exact statement. No approximations have been introduced other than
those used to formulate the boundary value problem. However, in order to
apply (3.2) for the solution of practical engineering problems,
approximations are required in both time and space. In this section, an
overview of a general-purpose, state-of-the-art numerical implementation is
presented. Many of the features and techniques to be discussed, in this
section, were developed previously for elastostatics (e.g., Banerjee et al,
1985,1988), and elastodynamics (e.g., Banerjee et al, 1986; Ahmad and

Banerjee, 1988), but are here adapted for thermoelastic analysis.

3.4.2 Temporal Discretization

Consider, first, the time integrals represented in (3.2) as
convolutions. Clearly, without any loss of precision, the time interval
from zero to t can be divided into N equal increments of duration At.

By assuming that the primary field variables, tB and ug, are constant
within each At time increment, these quantities can be brought outside of

the time integral. That is,

. N nat

CpattgX,t) = 3 the) | Gpa(x-t,t-v)de (3.32)
n=1 (n-1)At

. N nat

Fotug(X,t) = ¥ upX) | Fap(X-&.t-v)dv (3.3b)

Ba B ’ B Ba ’ ’ .
n=1 (n-1)At

where the superscript on the generalized tractions and displacements,
obviously, represents the time increment number. Notice, also, that,

within an increment, these primary field variables are now functions of



position only. WNext, since the integrands remaining in (3.3) are known in
explicit form from the fundamental solutions, the required temporal

integration can be performed analytically, and written as

N+1-n nAt

Ggq (X-8) = | Ggq (X-E,t-v)ds (3.4a)
(n-1)At

N+1-n nAt

Fgo (X-8) = | Fpa(X-£,t-v)dr . (3.4b)
(n-1)At

These kernel functions, GE.,(X-&) and Fg,(X-%), are detailed in Appendix B.
Combining (3.3) and (3.4) with (3.2) produces
N N+1-n N+1-n

padu(®) = ¥ [ [ epax-01thx) - Fgx-0uf) Jaswr .
n=l s (3.5)

which is the boundary integral statement after the application of the

temporal discretization

3.4.3 pgpatial Discretization

With the use of generalized primary variables and the incorporation of
a piecewise constant time stepping algorithm, the boundary integral
equation (3.5) begins to show a strong resemblance to that of
elastostatics, particularly for the initial time step (i.e., N=1). In this
subsection, those similarities will be exploited to develop the spatial
discretization for the coupled quasistatic problem with two-dimensional
geometry. This approximate spatial representationwill, subsequently,
permit numerical evaluation of the surface integrals appearing in (3.5).
The techniques described here, actually, originated in the finite element

literature, but were later applied to boundary elements by Lachat and



Watson (1976).

The process begins by subdividing the entire surface of the body into
individual elements of relatively simple shape. The geometry of each
element is, then, completely defined by the coordinates of the nodal points

and associated interpolation functions. That is,

X(2) = X5 (D) = N, (Dx4y (3.6)
with

4 intrinsic coordinates

N, shape functions

Xiw nodal coordinates

and where w is an integer varying from one to W, the number of geometric
nodes in the element. Next, the same type of representation is used,

within the element, to describe the primary variables. Thus,

Ul

N, (z)ul, (3.7a)

t‘;(c) N, ()tD) (3.7b)

in which ufl "and tD  are the nodal values of the generalized displacement
and tractions, respectively, for time step n. Also, in (3.7), the integer

w varies from one to 2, the total number of functional nodes in the
element. From the above, note that the same number of nodes, and
consequently shape functions, are not necessarily used to describe both the
geometric and functional variations. Specifically, in the present work,
the geametry is exclusively defined by quadratic shape functions. In two-
dimensions, this requires the use of three-noded line elements. On the
other hand, the variation of the primary quantities can be described,

within an element, by either quadratic or linear shape functions. (The



introduction of linear variations proves computationally advantageous in

some instances.)
Once this spatial discretization has been accomplished and the body
has been subdivided into M elements, the boundary integral equation can be

rewritten as

NOM N+1-n
Coa(®uf (&) = ¥ ( ¥ [ [ gax(0r-0)n,(0)t],
n=1 m=1 Sy

N+1-n
" FpaX(0-0N,(0ug, Bsx() ), (3.8)

In the above equation, t§ and uf, are nodal quantities which can be
brought outside the surface integrals. Thus,

N M N+1-n
Caal®IuR(2) = ¥ ( ¥ th, [ GaX()-0IN,()dSX ()
n=1 m=1 Sm

N+1-n
-}, ngBa(X(c)—t)Nm(;)dS(X(g)) } . (3.9)

The positioning of the nodal primary variables outside the integrals is, of
course, a key step, since now the integrands contain only known functions.
However, before discussing the techniques used to numerically evaluate
these integrals, a brief discussion of the singularities present in the
kernels GJ and Fp, is in order.

The fundamental solutions to the uncoupled quasistatic problem contain
singularities when the load point and field point coincide, that is, when

r=0. The same is true of Gf, and Fj,, since these kernels are derived

10




directly from the fundamental solutions. Series expansions of terms
present in the evolution functions can be used to deduce the level of
singhlarities existing in the kernels.

A number of observations concerning the results of these expansions
should be mentioned. First, as would be expected, Fia has a stronger level
of singularity than does the corresponding G}IB, since an additional
derivative is involved in obtaining F}IB from G}zB' Second, the coupling
terms do not have as a high degree of singularity as do the corresponding
non-coupling terms. Third, all of the kernel functions for the first time

step could actually be rewritten as a sum of steady-state and transient

components. That is,

1 s tral
G "SGaB+ G

af af
1 _s trel
FGB = SFnﬁ + rraﬁ ]

Then, the singularity is completely contained in the steady-state portion.
Furthermore, the singularity in G}; and F}; is precisely equal to that for

elastostatics, while the G}y and Flg singularities are identical to those
for potential flow. (For two-dimensions, the subscript @ equals three.)

This observation is critical in the rnumerical integration of the Faﬁ kernel
to be discussed in the next subsection. However, from a physical
standpoint, this means simply that, at any time t, the nearer one moves
toward the load point, the closer the quasistatic response field
corresponds with a steady-state field. Eventually., when the sampling and
load points coincide, the quasistatic and steady-state responses are
indistinguishable. As a final item, after careful examination of Appendix
B, it is evident that the steady-state components in the kernels G‘;B and

FEB. with n>1, vanish. In that case, all that remains is a transient

portion that contains no singularities. Thus, all singularities reside in

11



the ssGaB and ssFaB components of Gip and Fis. respectively.

3.4.4 MNumerical Integration
Having clarified the potential singularities present in-the coupled

kernels, it is now possible to consider the evaluation of the integrals in

equation (3.9). That is, for any element m, the integrals

/gm Ge MR (D) -EIN, (£ )dS(X(2)) (3.10a)
fgm Fig. T(X(2)-3)N,(2)dS(X () (3.10b)

will be examined. To assist in this endeavor, the following three distinct

categories can be identified:

(1) The point & does not lie on the element m

(2) The point & lies on the element m, but only non-singular or
weakly singular integrals are involved

(3) The point & lies on the element m, and the integral is strongly

-singular.

In practical problems involving many elements, it is evident that most
of the integration occurring in equation (3.9) will be of the Category (1)
variety. In this case, the integrand is always non-singular, and standard
Gaussian quadrature formulas can be employed. Sophisticated error control
routines are needed, however, to minimize the computational effort for a
certain level of accuracy. This non-singular integration is the most
expensive part of a boundary element analysis, and, consequently, must be
optimized to achieve an efficient solution. In the present implementation,
error estimates, based upon the work of Stroud and Secrest (1966), are

employed to automatically select the proper order of the quadrature rule.

12



‘ Additionally, to improve accuracy in a cost-effective manner, a graded

subdivision of the element is incorporated, especially when ¢ is nearby.
For two-dimensional problems, the integration order varies from two to
twelve, within each of up to four element subdivisions.

Turning next to Category (2), one finds that again Gaﬁssian quadrature
is applicable, however, a somewhat modified scheme must be utilized to
evaluate the weakly singular integrals. This is accomplished in two-
dimensional elements via suitable subsegmentation along the length of the
element so that the product of shape function, Jacobian and kernel remains
well behaved.

Unfortunately, the remaining strongly singular integrals of Category
(3) exist only in the Cauchy principal value sense and cannot, in general,
be evaluated numerically, with sufficient precision. It should be noted
that this apparent stumbling block is limited to the strongly singular

portions, ssFij and SSFOO, of the F},B kernel. The remainder of Fiﬁ,

including trFij and tnge, can be computed using the procedures outlined
for Category (2). However, as will be discussed in the next subsection,

even the Category (3) ssFi. and SSpy, kernels can be accurately determined

]
by employing an indirect ‘rigid body’ method originally developed by Cruse

(1974).

3.4.5 Assembly
The complete discretization of the boundary integral equation, in both

time and space, has been described, along with the techniques required for
numerical integration of the kernels. Now, a system of algebraic equations
can be developed to permit the approximate solution of the original
quasistatic problem. This is accomplished by systematically writing (3.9)
at each global boundary node. The ensuing nodal collocation process, then,

13



produces a global set of equations of the form

N
Y @M - ™I ) = (o, (3.11)
n=1
where
[N*1-N]  ynassembled matrix of size (4+1)P x  (d+1)Q, with

(FN+1-n]

{tny

{uy

{0}

coefficients determined from (3.10a)

assembled matrix of size (d+1)P x (d+1)P, with coefficients
determined from (3.10b) and Cgq included in the diagonal
blocks

global generalized nodal traction vector with (d+1)Q

components

global generalized nodal displacement vector with (d+1)P

components
null vector with (d+1)P components

total number of global functional nodes

nurber of functional nodes in element m

dimensionality of the problem.

In the above, recall that the terms generalized displacement and traction

refer to the inclusion of the temperature and flux, respectively, as the

(d+1) component at any point.

Consider, now, the first time step. Thus, for N=1, equation (3.11)

14



becomes
el - (Flitwly = {0} . : (3.12)

However, at this point, the diagonal block of [Ell has not been completely
determined due to the strongly singular nature of SsFij and sS"Fee.
Following Cruse (1974) and, later, Banerjee et al (1986) in elastodynamics,
these diagonal contributions can be calculated indirectly by imposing a
uniform 'rigid body’ generalized displacement field on the same body, but
under steady-state conditions. Then, obviously, the generalized tractions

must be zero, and
(Sr1(1) = (0} , (3.13)

where (1) is a vector having all (d+1)P components equal to one. Using
(3.13), the desired diagonal blocks, SSFij and SSFgq, can be obtained from
the summation of the off-diagonal terms of [SSFl. The remaining transient
portion of the diagonal block is non-singular, and hence can be evaluated

to any desired precision. With that step completed, (3.12) is rewritten as
i1y - Flruly = (o) (3.14)

In a well-posed problem, at time At, the set of global generalized
nodal displacements and tractions will contain exactly (d+1)P unknown
components. Then, as the final stage in the assembly process, equation

(3.14) can be rearranged to form

(a1 xly = BL1Gyly , (3.15)
in which
{x1) unknown components of {ul} and (t1}
tyh) known components of {ul} and {thH
15



(al], (B11 associated coefficient matrices.

3.4.6 Solution

To obtain a solution of (3.15) for the unknown nodal quantities, a
decomposition of matrix (al] is required. In general, (al] is a densely
populated, unsymmetric matrix. The out-of-core solver, utilized here, was
developed originally for elastostatics from the LINPACK software package
(Dongarra et al, 1979) and operates on a submatrix level. Within each
submatrix, Gaussian elimination with single pivoting reduces the block to
upper triangular form. The final decomposed form of [Al] is stored in a
direct-access file for reuse in subsequent time steps. Backsubstitution
then completes the determination of {x1). Additional information on this
solver is available in Banerjee et al (1985).

After returning from the solver routines, the entire nodal response
vectors, {ul} and (t1}, at time At are known. For solutions at later
times, a simple marching algorithm is employed. Thus, from (3.11) with

N=2,
(R1ely - (P21 tul) + 161112} - (Fl1tu?) = (o} . (3.16)

Assuming that the same set of nodal components are unknown as in (3.14) for

the first time step, equation (3.16) is reformulated as
(al1(x2) = BL1ty?) - (c21{th) + (F21{ul} . (3.17)

Since, at this point, the right-hand side contains only known quantities,
(3.17) can be solved for {x2}). However, the decomposed form of (ali
already exists on a direct-access file, so only the relatively inexpensive
backsubstitution phase is required for the solution.

The generalization of (3.17) to any time step N is simply

16



N-1
LNy = Bl1y™ - Y MM - VI ) (3.18)

n=1
in which the summation represents the effect of past events. By
systematically storing all of the matrices and nodal response vectors
computed during the marching process, surprisingly little computing time is
required at each new time step. In fact, for any time step beyond the
first, the only major computational task is the integration needed to form
(G¥] and [FN]. Even this process is somewhat simplified, since now the
kernels are ron-sinqular. Also, as time marches on, the effect of events
that occurred during the first time step diminishes. Consequently, the
terms containing [(GN1 and (FV] will eventually become insignificant
compared to those associated with recent events. Once that point is
reached, further integration is unnecessary, and a significant reduction in
the computing effort per time step can be achieved.

It should be emphasized that the entire boundary element method
developed, in this section, has involved surface quantities exclusively. A
complete solution to the well-posed linear uncoupled quasistatic problem,
with homogeneous properties, can be obtained in terms of the nodal response
vectors, without the need for any volume discretization. In many practical
situations, however, additional information, such as, the temperature at
interior locations or the stress at points on the boundary,. is required.

The next subsection discusses the calculation of these quantities.

3.4.7 Interior quantities
Once equation (3.18) is solved, at any time step, the complete set of

primary nodal quantities, {u¥) and (t¥1, is known. Subsequently, the

response at points within the body can be calculated in a straightforward

17



manner. For any point & in the interior, the generalized displacement can

be determined from (3.9) with Cgq = 8gq. That is,

N M
Wie) =y (Y[ th, Is_ IR (2)-2IN, ()dS (R (2))
n=1 m=1

" Ts PR "X(D-8IN,(2)dS(X () 1} (3.19)
Now, all the nodal variables on the right-hand side are known, and, as long
as, & is not on the boundary, the kernel functions in (3.19) remain non-

singular. However, when  is on the boundary, the strong singularity in

ss
F ga Prohibits accurate evaluation of the generalized displacement via

(3.19), and an alternate approach is required. The apparent dilemma is
easily resolved by recalling that the variation of surface quantities is
completely defined by the elemental shape functions. Thus, for boundary

points, the desired relationship is simply
Wie) = N0 oY, (3.20)

where N (:) are the shape functions for the appropriate element and
r are the intrinsic coordinates corresponding to & within that element.

Obviously, from (3.20), neither integration nor the explicit contribution

of past events are needed to evaluate generalized boundary displacements.
In many problems, additional quantities, such as heat flux and stress,

are also important. The boundary integral equation for heat flux, can be

written
N M
@) =Y (Y el 5 ENe M(-DIN,()ESKE))
n=1 m=1 m
- o, fg Dfpl MX()-0IN,(2)dSX () 1) (3.21)
m

18




where

(3.21a)

3CEe(X(2)-8)
k-_____._

OFe(X(2)-F)
k= — -

1

(3.21b)

Dhei (X(2)-8)

This is valid for interior points, whereas, when t is on the boundary, the

shape functions can again be used. In this latter case,

N (g = ny (D)) (3.22a)

N <c>

o %t

q’l
[v8

= P (3.22b)

Wh—n

which can be solved for boundary flux. Meanwhile, interior stresses can be

evaluated from

N M
50 =Y (Y1 tf, Is_ Epi3 MX(0-0N (0)dS(X ()
n=1 m=1
WBo fs_Dgl3 MX(D-DN,(0)dSK () 1) (3.23)
in which
aGh Gn 3Gp
2pv Bl pi By y _
BlJ(X(C) §) =137 8 i FF— &j + 55 ) - B8y Gng
(3.23a)
aFR aFR;  oFp
2uv Bl gi 5! _
Dgi $(XC0-8) = 735 8 ij 9% T (agj * Ly ) Bﬁinge .
(3.23b)

BEquation (3.23) is, of course, developed from (3.19). Since strong kernel

singularities appear when (3.23) is written for boundary points, an

19



alternate procedure is needed to determine surface stress. This alternate
scheme exploits the interrelationships between generalized displacement,
traction, and stress and is the straightforward extension of the technique
typically used in elastostatic implementations (Cruse and Van Buren, 1971).

Specifically, the following can be obtained

ny(Boj(8) = N (o)t} (3.242)
p&.
ijkl
o386 - —g= 30+ ((2)) = - BBy4N,(¢)ug, (3.24b)
ox. aN
-1 N w N
ar U139 =37 Y (3.240)

in which Wl ' is cbviously the nodal temperatures, and,

DEjk1 = ABjiBky + 2ubjybsy -

Equations (3.24) form an independent set that can be solved numerically for

Gt;j(t) and ubi]‘j(c) completely in terms of known nodal quantities utim and

ttim, without the need for kernel integration nor convolution. WNotice,

however, that shape function derivatives appear in (3.24c), thus
constraining the representation of stress on the surface element to
something less than full quadratic variation. The interior stress kernel

functions, defined by (3.23), are also detailed in Appendix B.

3.4.8 Advanced Features
The thermoelastic formulation has been implemented as a segment of the

state-of-the-art, general purpose boundary element computer program, GP-
BEST. Consequently, many additional features, beyond those detailed above,

are available for the analysis of complex engineering problems. Perhaps,
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the most significant of these items, is the capability to analyze
substructured problems. This, not only extends the analysis to bodies
composed of several different materials, but also often provides
computational efficiencies. An individual substructure or generic modeling
region (GMR) must contain a single material. During the integration
process, each GMR remains a separate entity. The GMR's are then brought
together at the assembly stage, where compatibility relationships are
enforced on cammon boundaries between regions. Typically, compatibility
ecnsures continuous displacement and temperature fields across an interface,
however, recent enhancements to the code permit sliding between regions,
spring contacts and interfacial thermal resistance to model air gaps or
coating resistances. In the latter instances, discontinuities appear at
the interface. In any case, the multi-GMR assembly process produces block-
banded system matrices that are solved in an efficient manner.

As another feature, a high degree of flexibility is provided for the
specification of boundary conditions. In general, time-dependent values
can be defined in either global or local coordinates. Not only can
generalized displacements and tractions be specified, but also spring and
convection boundary conditions area available. Another recent addition
permits time-dependent ambient temperatures. A final item, worthy of note,
is the availability of a comprehensive symmetry capability which includes
provisions for both planar and cyclic symmetry.

These advanced features greatly extend the range of applicability of
the present formulation. In the next section, several examples are
presented to demonstrate the validity and applicability of this boundary-

only formulation.
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3.5 Examples
3.5.1 Sudden Heating of an Aluminum Block

As a first example, transient heating of an aluminum block is examined
under plane strain conditions. The block, shown in Figure 3.1, initially
rests in thermodynamic equilibrium at zero temperature. Then, suddenly,
the face at Y = 1.0 in. is elevated to 100°F, while the remaining three
faces are insulated and restrained against normal displacements. Thus,
only axial deformation in the Y-direction is permitted. Naturally, as the
diffusive process progresses, temperature builds along with the lateral

stresses o, and ¢ To complete the specification of the problem, the

zz2*
following standard set of material properties are used to characterize the

aluminum:
E = 10x106 psi , v =0.33,
a = 13x1076/F ,
k = 25 in.-1b./sec. in.SF , pC, = 200 in.-lb./in.3°F .

The two-dimensional boundary element idealization consists of the
simple four element, eight node model included in Figure 3.1. A time step
of 0.4 sec. is selected, corresponding to a non-dimensional time step of
0.05. Additionally, a finite element analysis of this same problem was
conducted using a modified thermal version of the computer code CRISP (Gunn
and Britto, 1984). The finite element model is also a two-dimensional
plane strain representation, however sixteen linear strain quadralaterals
are placed along the diffusion length. In the FE run, a time step of 0.2
sec. is employed.

Temperatures, displacements, and stresses are compared in Table 3.1.
Notice that the boundary element analysis, with only one element in the

flow direction, produces a better time-temperature history than does a
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sixteen element FE analysis with a smaller time step. Both methods exhibit
greatest error during the initial stages of the process. This is the
result of the imposition of a sudden temperature change. Mearwhile, the
comparison of the overall axial displacement indicates agreement to within
3% for the BE analysis and 5% for the FE run. A steady-state analysis via
both methods produces the exact answer to three digit accuracy. The last
comparison, in the table, involves lateral stresses at an integration point
in the FE model. The boundary element results are quite good throughout
the range, however, the FE stresses exhibit considerable error,
particularly during the initial four seconds. Actually, these finite
element stress variations are not unexpected in light of the errors present
in the tanperatui'e and displacement response. Recall that in the standard
finite element process, stresses are computed on the basis of numerical

differentiation of the displacements, whereas in boundary elements, the
stresses at interior points are obtained directly from a discretized
version of an exact integral equation. Consequently, the BE interior

stress solution more nearly coincides with the actual response.

3.5.2 (Circuylar Disc

Next, transient thermal stresses in a circular disc are investigated.
The disc of radius 'a’ initially rests at zero uniform temperature. The
top and bottom surfaces are thermally insulated, and all boundaries are
completely free of mechanical constraint. Then, suddenly, at time zero,
the temperature of the entire outer edge (i.e., r=a) is elevated to unity
and, subsequently, maintained at that level.

The boundary element model of the disc with unit radius is shown in
Figure 3.2. Only four quadratic elements are employed, along with quarter
symmetry. Ten interior points are also included strictly to monitor

response. In addition, the following non-dimensionalized material
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properties are arbitrarily selected for the plane stress analysis:

E = 1,333 pca = 1,0
v = 0,333 k =1.0
a=0.75

Results obtained under quasistatic conditions for a time step of 0.005 are
compared, in Figures 3.3, 3.4 and 3.5, to the analytical solution presented
in Timoshenko and Goodier (1970). WNotice that temperatures, as well as
radial and tangential stresses are accurately determined via the boundary
element analysis. In particular from Figure 3.5, even the tangential

stress on the outer edge is faithfully reproduced.

3.5.3 Turbine Blade

For the final application, the plane strain response of an internally
cooled turbine blade is examined under startup thermal transients. The
boundary element model of the blade is illustrated in Figure 3.6. In this
problem, the two GMR appréach is chosen solely to enhance computational
efficiency. This is accomplished by reducing the aspect ratio of
individual GMR's and by creating a block banded system matrix. The leading
(lefthand) GMR consists of 26 quadratic elements, while 24 elements are
used to model the trailing (righthand) region.

The blade is manufactured of stainless steel with the following

thermomechanical properties:

"
[}

368 in.-lb./in.soF
1.65 in.-1b./sec.in.CF

E =29,0x 106psi pC

x
n

v =0,30

9.6 x 10°64in./in.oF

During operation a hot gas flows outside the blade, while a relatively cool
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gas passes through the internal holes. The gas temperature transients are
plotted in Figure 3.7 for a typical startup. Convection film coefficients

are specified as follows:

Outer surface at leading edge h = 50 in.~1b./sec.in.2°F
Remainder of outer surface h = 20 in.-1b./sec.in.2OF
Inner cooling hole surfaces h = 10 in.-1b./sec.in.20p

A time step of 0.2 sec. is employed for the boundary element analysis.

The response at two points, A, on the leading edge and, B, at midspan
are displayed in Figures 3.8 and 3.9. VNotice that temperatures and
stresses are consistently higher on the leading edge, reaching peak values
of approximately 1500°F and -60 ksi, respectively. Also, as is evident

from Figure 3.9, significant stress reversals occur during this startup.

As a next step, these numerical results could be used as input for a
fatigue analysis to assess the durability of the design. In that regard,
it should be emphasized that the stresses presented for points A and B are
surface stresses, calculated by satisfying the constitutive laws, strain-
displacement and equilibrium directly at the boundary point. This can be
expected to produce much more accurate results than the standard practice
utilized in finite element approaches of extrapolating interior Gauss point

stress values to the boundary.
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4 INTEGRAL PORMULATIONS FOR FLUIDS

4.1 Introduction

Next, attention turns to the hot fluid. In the following, a number of
integral formulations are developed for compressible and incompressible
thermoviscous flow and, additionally, for the simpler theory of convective
heat transfer. Subsections present the governing equations, fundamental
solutions, integral representations, an overview of the numerical
implementation, a brief description of the approach for coupling the fluid
with the solid, and, finally, a number of detailed numerical examples.

4.2 Governing Equations
4.2.1 Compressible Thermoviscous Flow

The governing equations for a thermally-sensitive, compressible,
viscous fluid can be developed from the consideration of the conservation
laws of mass, momentum, and energy. In each case, the law is first written
for a continuum which is, in general, moving non-uniformly with respect to
the observer. The local (differential) form of the law is then derived.
Although a derivation of the governing equations of fluid dynamics, similar
to the following, can be found in a number of texts, it is a useful means
for establishing the underlying assumptions and limitations.

The Principle of the Conservation of Mass asserts that the time rate
of change of mass must equal the rate of mass increase due to internal

sources. That is,

g_tj"dv=1‘“’dv' (4.1)
vt) vit)

where p is the mass density, Vis the mass source rate per unit volume, and
the operator D/Dt represents a material time derivative. Notice that in

(4.1) the mass of interest occupies V(t), a region of space which may vary
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with time. Applying a generalized version of Leibnitz’'s Rule to the left-
hand side of (4.1) produces

%IP&V"I %Edv"j pv4nyds , (4.2)

vit) Vi) s(t)

where S(t) is the surface enclosing V(t), and vj and ny are the local
velocities and outward normals on that surface, respectively. However, via

the Divergence Theorem, the surface integral can be rewritten as

]
f pvn 38 = f AGALE (4.3)

S(t) vie) 3

Therefore, from (4.1), (4.2), and (4.3)

[ [2+5= Gup-v]av=o. (4.4)
V(t) J
Since this integral must vanish for all regions V(t), the integrand must be

identically zero. Thus,

80 , 3
at IxX.

(pv.) - v =0 , (4.5)
3 J

which is the desired local form of continuity or Conservation of Mass.

This can also be written

V.
Dp s -
ot TP, V=0 (4.6)
J
where
D _a 8
Dt - ot + vj % (4.7)
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is again the material time derivative.

Next, consideration is given to the Conservation of Linear Momentum.
In this case, according to Newton’s Second Law, it is postulated that the
time rate of change of momentum is equal to the resultant of the applied
forces. Alternatively, these applied forces can be visualized as the rate
of momentum entering the region through the surface plus the rate of

momentum increase due to internal generation. With either interpretation,

D -
" I pv; AV = j 035048 + j (£54v; DAV (4.8)
Vit) S(t) V(L)

where i is the total stress tensor and f; is the body force vector.
Notice that the term vy is included in the last‘ volume integral to
account for the internal momentum generation due to mass sources. Applying
the generalized Leibnitz’s Rule and the Divergence Theorem to the left-hand

integral of (4.8) yields

0
B -1 —<pv)+§-(pvv)}dv (4.9)
V(t) V() ]

The Divergence Theorem can also be invoked to convert the surface integral

in (4.8) into a volume integral. Thus,
Joyngs-| Flav. (4.10)

Utilizing (4.9) and (4.10), Newton's Second Law becomes

o,
8 ij

J [ & wvp s g v -8 -5, - vy Jav -0, (4.11)
V(t) ™3 ]

Again, since this integral must vanish for arbitrary regions, the integrand

must be zero. That is,
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90, .
3 9 1] _ ¢, - =
ot (pvi) + axj (pViVj) - axj fi Vilb =0 . (4. 12)

However, equation (4.12) can be rewritten as

av, v, 9o,
1 i _ _7ij _ p 3 _ -
P 3e * PV i, " o, £+ vy [ 22 . ox; (pvs) = ¥ J=0. (419

But since the bracketed term multiplying v; in (4.13) equals zero from the

continuity equation (4.5), the local form of the Conservation of Linear

Momentum becomes

ov v, do
1 . 17 _ -
p T + pvJ ——axj axj fl 0, (4.14)
or simply
Dv. LY. P9
1 _ 11 _ -

Note that although continuity is invoked above, a flow field that conserves
linear momentum does not automatically conserve mass. In addition, the
moment of momentum must also be conserved as a consequence of Newton's
Second Law. However, satisfaction of this law only necessitates that the
stress tensor %55 be symmetric.

Finally, the Conservation of Energy is examined. For energy balance,
the time rate of change of kinetic plus internal energy must equate the
rate of work done by the body forces and surface tractions, along with the
rate of energy entering via heat transfer across the surface, the rate of
kinetic and internal energy increase due to mass sources, and the rate of
energy input due to heat sources. In equation form,

Vivi

D -
Dt [ sigtema=| gvav-| ajynyuias - | qpnyas
v(it) vt) S(t) S(t)
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ViVe
tfvSEepa+ | dav (4.16)

vit) vit)
where E is the internal energy per unit mass, a3 is the heat flux vector

and 0 is the heat source rate per unit volume. By first applying the
generalized Leibnitz's Rule to the left-hand side of (4.16), and then
invoking the Divergence Theorem for all of the remaining surface integrals,

equation (4.16) is transformed into

D Yi%i 2%
I [ [ Dt ( 2 + E) - pvifi ax. (UiJV ) + axi ¢
V(t) J
V.V,
13 8 , 3 - -
st DGRy g PV ¥ Jav=o0. (4.17)

Since this is valid for any region V(t),

pg?("ivi”.;) pVify - J(aijv)+-::—i'—¢
+ ‘%ﬁ*“:"%ﬁ*alﬁ“"’i’ -v)=o0. (4.18)
After further rearrangement this becomes,
POt * 3 aq "ij;:_;'¢+"i[°;:i'%i'fi]
+(Y—§ﬁ+a)[g—z+3:—i(pvi)-w]=o. (4.19)

Now, the first bracketed expression in (4.19) vanishes via the Conservation
of Linear Momentum, while the second bracketed expression is zero from the

Conservation of Mass. Thus, equation (4.19) reduces to
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9q; v,
DE ., Ei _ 1 _4_
Ppt * ox; ~ °ij ax =0 (4.20)
as the expression for the Conservation of Energy.
To recapitulate, the conservation laws for a thermoviscous fluid can

be written collectively as

v,
Dp hs _
pt " P % v =0 Mass (4.21a)
Dv 06,
_i_ 74y . _
P bt 9% £; =0 Momentum (4.21b)
aq. av;
DE =i _ i _a_
Pbe T, T % %, =0. Energy (4.21c)

Next, constitutive relationships are introduced. In particular, a
homogeneous isotropic Newtonian fluid is assumed such that
ov., & avk
Gij = 2[1 (—_' + X') + kﬁij a'x_ - 6ijp » (4.22)
j i k
where p is the thermodynamic pressure, while u and A are coefficients of

viscosity. Fourier's law of heat conduction is also envoked, which for an

isotropic medium becomes

26
9 = -k ax; (4.23)

where @ is the thermodynamic temperature and k is the thermal conductivity.
Additionally, the fluid is modeled as a perfect gas. Thus, the kinetic

equation of state is simply

p = pRO , (4.24)
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in which R is the gas constant. Finally, a relationship is needed for the

internal enerqgy E. From thermodynamic considerations for a perfect gas.

h=E+B-E+rpo (4.25a)

where h is the enthalpy. In addition, if the specific heat at constant

pressure, c., does not vary with temperature, then

P
= C .
h pe , (4.25Db)
and, hence,
E = (cp_R)e = cve s (4.26)
where c.. is the specific heat at constant volume. Equations (4.22),

v
(4.23), (4.24), and (4.26) lead to the following form of the governing

equations for the idealized themmoviscous fluid:

v,
Dp 1 _ =
Dt +p 3Xi vy =0 (4.27a)
2 2
Dv 0°v. v,
i bl i ap
p —— = (a+n) - + - f. =0 (4.27b)
Dt 0X.9X. 9%.9X. i
Jaxl x:l xJ axi
2 v,
Do d
pc. = 26 1 _s5-d=0, (4.27¢)

-k +p

where & is the viscous dissipation defined by

avi

5 = _ (4.28)

t.. ——
11 9X.
3 9%

and the fluid stresses
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av. _;1 avk
Tij = 2w (—_J * axl) * M85 3%, 3%y,

. (4.29)
Equations (4.27), along with (4.24), define a highly non-linear set of six

equations in the six variables: velocity (v;), pressure (p), temperature
(8), and density (p).

4.2.2 Incompressible Thermoviscous Flow

For incompressible flow, a number of simplifications are in order. 1In
particular, the divergence of the velocity is zero, which from continuity
requires that the density remain constant. As a result, the governing

equations reduce to the following:

‘ 2
Dv v
_i_ i ., _ ¢ _
P Bt M oax.o0x- + ax fi =0 (4.30a)
3°%3 i
DO a 6
pcV DE -k TN a -&-06=0 (4.30b)
where
av, V.
- R S |
tij = 2u (axj + axi) ’ . (4.31)

and the viscous dissiptation & is again defined by (4.28). It should be
noted that now the quantity p, appearing in (4.30a), is no longer the
thermodynamic pressure determined from (4.24), but rather the mean fluid

pressure.

4.2.3 Incompressible Viscous Flow
With the assumption of isothermal conditions, the energy equation
(4.30b) is no longer required. All that remains is the familiar Navier-

Stokes equation

p—"-un
0X.:0X..
Dt XJBXJ

P _ ¢ .
+ oxq £f.=0. (4.32)
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4.2.4 Convective Heat Transfer
On the other hand, if the flow field is known or can be approximated,
then equation (4.30a) is superfluous. Consequently, fluid temperatures can

be determined directly from the scalar convective-diffusion equation

2
D6 970
Py bt ~ Kk Fxpax; 470 (4.33)
i
In (4.33), the effects of viscous dissipation are included as body heat

sources.

4.3 PFundamental Solutions

4.3.1 Compressible Thermoviscous Flow

One of the primary requirements for developing a boundary element
formulation is that the fundamental solution of the governing differential
equations must exist. These fundamental solutions can be viewed in same
sense as the shape functions in the finite element method. For solid
mechanics these have been very well explored. Starting with Kelvin’'s
solution (1846), investigators such as Stokes, Poisson, Boussinesq,
Mindlin, and Nowacki have provided both static and transient solutions
which form the basis of the boundary element formulations in solid
mechanics. It is unfortunate that workers in fluid mechanics have not
found much use for these fundamental solutions in the infinite space and
therefore have not derived the corresponding fluid solutions. The
exception is the time-dependent fundamental solution for wviscous,
incompressible Stokes flow presented in Ladyzhenskaya (1969). Since the
boundary element formulations could not be developed without these
solutions, a substantial amount of effort has been devoted in the present
work to successively derive more complete solutions of the differential

equations. In essence, each advancement brings more of the physics of the
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problem into the fundamental solution. Below is an overview of the
derivation for compressible, themmoviscous flow.

As a starting point, reference values for each of the primary
variables are introduced in an effort to produce a linearized differential

operator. Thus, let

P =P, + P, (4.34b)
0 = Oo + 0, (4.34c)
P =Pyt Py (4.344)

in which Ui' | P and po are constant reference values, and Ui Pye 8,

and p, are the perturbations. Plugging (4.34) into (4.27) yields, after

some manipulation,

Dop du, op Do ou
A i__ A _A 1
bt " Podx; T Vidk TPRbE Paax TR (4.352)
Du a%u. a2y 3 au; D.u;
od (A+p) 1y i+pA=-Pu-——l-P—9’l+f
o Dt axian anan aXi J axj A Dt 1
(4.35b)
D9, a%e 20 D9
PoCv Dt 3% 0x R Py "Dt
X
i
where
D
0 _23_ o
ot = 3% + Ui axi . (4.36)

Now, in (4.35), the entire left-hand side involves a linear differential

operator with constant coefficients. WNotice that in the above form, the
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operator for the energy equation involves only temperature (6,), while the
mass and momentum balance operators are coupled by the inclusion of both
velocity (ui) and pressure (pA). Terms on the right-hand side of (4.35)
are, in general, non-linear, and can for the present be considered as body

sources and forces of unknown magnitude. Then, the governing equations

become
D E' ou. '
1 - -
Dt + po —aXi =y (4.37a)
Doui 32u azui apA -
p. = - (A+p) i = f (4.37b)
o Dt 0X.9x. 9K
xlaxJ axjaxJ axi i
2
Do 970
oA A .9 (4.37¢)

PoSy DE T K axpaxg
A fundamental solution of (4.37) is required for the boundary element
formulation. This will be obtained subsequently, and referred to as the
convective fundamental solution for compressible, thermoviscous flow, since
a linearized portion of the convective derivatives are included in the
differential operator. Interestingly, it may also be viewed as the
fundamental solution due to stationary point forces and sources in a
uniformly moving medium or, equivalently, as a uniformly moving point force
and source solution in a stationary medium. The concept of moving media
fundamental solutions is clearly developed in the excellent monograph on
aeroacoustics by Goldstein (1976).

Consider, first, the coupled set of equations (4.37a) and (4.37b), and
introduce the Hemholtz decomposition of the velocity and body force, such
that
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oW, W,
_ oW _k A
Ui = 3x; ' Cijk ax, with 5= =0, (4.38a)
1 J i
oF oF .
P 3 K eh b =
£1 = ax, * ®ijk ox. with —= =0 . (4.380)
1 J i
Then, (4.37b) becomes
D.w 2
B2 r o 3w _
ax, L Popt - M2 5oax. *Pa- f }
i 39%3
3 Dy a%wy
* ikl R [ Po D¢ " M axjaxj - B ]= 0. (4.39)

For generality, the bracketed temrms must vanish independently. Thus,

D w 32w
Po Dt~ (M2W) axox; *py - f

=0 (4.40a)

2
: Dowl_u a%w,
o Dt 0X.0x.

i°%5

- Fl =0. (4,40b)

Notice that equation (4.40b) is completely independent of w and p,, and,
consequently can be solved separately. In fact, this is the vortical
component of the flow, which behaves in an identical manner for both
compressible and incompressible flows. The fundamental solution of (4.40b)
in the non-convective form was originally developed by Ladyzhenskaya
(1969). This provides the basis for the development of the convective
solution to (4.40b), as will be seen subsequently. However, next attention
turns to the dilatational component of the flow.

The velocity appearing in the linearized continuity equation (4.37a)

can also be decomposed. As a result,
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D 2
oPa + 9w

P,som— =y » (4.41)
Dt (o] axiaxi

since the divergence of the vortical component is zero. Combining
appropriate derivatives of (4.40a) and (4.41), to eliminate the variable w,

yields the following third order differential equation for pressure:

2 2 2
"Pa L y0s2w Do PPy DA o (4.42)
9X.3x, 2 Dt ax.9x. 2 .2 ’ )
171 poco 1 %1 co Dt
where
2- Dy 2
q - (v(x+;u) a: ;;x _ 1; D._:_, + a: gx . (4.43)
POCO 171 CO 11

with Co representing the speed of sound in the perfect gas at the reference

state and
C
y=-L>1 (4.44)
Cyv
P
2 - —2, (4.45)
o p,

The fundamental solution of (4.42), even in the non-convective form, does
not appear to exist in the literature, although an attempt was made
recently to obtain the nonconvective form by Piva and Morino (1987).
Actually, the solutions of (4.42) that are required for the boundary
element formulation are those due to instantaneous point mass sources and
point forces. Furthermore, in addition to the pressure response, the
velocity field corresponding to these sources and force must be determined.
In all cases, the results can be determined directly from the solution of

the equation
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2 2 2
9°B D a’p D
U, x#20) o (U, 1 Pofy 8(x-£)6(t-t) = 0 , (4.46)
axiaxi 2 Dt 9x.9x. 2 2
POCO 171 Co

where the scalar variable B, is introduced along with the usual generalized
function 8. The subscript, U, is merely a reminder that By is a uniformly
moving medium solution. Equation (4.46) is a scalar damped wave equation,

which has an approximate fundamental solution of the form

c '
By = == [ (1 + 2 Bie bRy - 2 e t'-Ry ] (4.47)
2nR R Co
where
n = 22 (4.483)
pO
t' = t—< (4.48b)
2 PR
Ry = (y4-Ujt ") (y;-Ust") (4.48c)
¥y = X4 (4.484)
2 o (e2pi2_p2,1/2
R= (ct'*-R)™* . (4.48¢e)

The presence of the Heaviside and delta functions in (4.47) establishes the
hyperbolic nature of the dilatational response. Thus, B, portrays the
propagation of a scalar wave in a moving medium. Furthermore, the
appearance of the convective radial distance Ry in the arguments of H and &
leads directly to shock phenomena. As a result, equation (4.47) is
appropriate for supersonic, as well as, subsonic flow.

Consider, initially, the medium subjected to a unit pulse body force.

In two-dimensions, let

fi = 8(x-8)8(t-t)ey (4.492a)
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(4.49b)

<1
[}
[~

From Gel'fand and and Shilov (1964), equation (4.49a) can be written

alternatively as

f _ 5(t"“C) 32
i~ 2 0X. 0%
n xjaxJ

which, in light of (4.38b), yields

(1n r)ei. (4.49c)

_ 8(t-7) @ '
f= B 3;; (1n r)ej (4.494)
8(t-%) @
Fl = - elij o 3;; (1n r)ej . (4.49¢)

Then, the pressure field can be determined by using (4.49d) in (4.43) and,

subsequently, (4.42). From the result,

2 2 2
Py yor2w) Do 3P4 4 DRy 5
oxgox; 2 Dt ox.0%: .2 2 2 [ 8(x-8)8(t-t) ] e; =0,
11 pge ¥ gDt X -
° (4.50)
and (4.46), it is evident that
3BU
T (4.51)

Additionally, eliminating the Laplacian operator in (4.40a), by employing

(4.41), produces

D w D
0¥  (a+2p) PoPA _
or
Dovw +2u) D P - 3
Dz = - Y(; zu) giA - ;A + gﬁ%.ﬁl E;T (ln r)ej . (4.53)
PoCo o o J
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The solution, w, of equation (4.53) can be found by integrating over time
within a uniformly moving media. Finally, the dilatational component of

the velocity is determined via (4.38a) as

pldil) _ 3w (4.54)

i ox., '
X{

which from (4.53) can be written

2
a(@iD) | [ 202w 9P 1t _a?

—_— (B~or)dT Y e: » (4.55)
' p2c? XXy po Jg Oxy0xy TU U ) J
with
= - ——6“2:-1) Inr, (4.56)
n

and B;; defined in Appendix C. Again, the subscripts, U, signify that the
solutions B and e should be expressed in convective coordinates.

To complete the unit force solution, the vortical component of the
velocity must be added to (4.55). In this case, the equation of interest
is (4.40b) with F, specified by (4.49e). Thus,

Do oy 5(t-7) _d
—— — (1n r)ej =0. (4.57)

[\ -n +e,..
o Dt axjaxj 1ij 2n axi

The solution to (4.57) can be determined in terms of a scalar Oys which is

the fundamental solution of the convective heat equation

2
L
o Dt 0X.0X_.
39%5

- 8(x-¢)6(t-x) = 0, (4.58)

detailed in Appendix C. In particular, from (4.57) and (4.58),

2

W 3
=M .. (4.59)
3xiaxi 1ij aXi J
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Substituting (4.59) into (4.57), and then taking the curl of the result,

produces

2
Dy W 9" wy a2 s(t-), ]
j »

o Dt (emkl 3;;) = emklelij [ " 9x) 9% - axkaxi ( 4nr

(4.60)
which from (4.38a) leads to the following form of the vortical component of

the velocity

2
™ (noy - apde | 5. (4.61)

g{vort) _ [ - Cmk1€144 It ?

pO 0 axi
Again, the subscript U is a reminder that the time integration should be
performed for a uniformly moving media.

To summarize, the unit instantaneous point force solution can be

written, from (4.51), (4.55), and (4.61), in the following form

2
B t 2
y(A+2p) U 1 9
u, = { + — —— (B;—ag)
i chg axiaxj Po 0[ axiaxj U %
2
d
- eiklelnd 3;;3;; (qu-aU) ] de }ej , (4.62a)
apU
pA = - m ej , (4-62b)
OA =0, (4.62¢c)

This completely defines the fundamental solutions pertaining to point
forces, however, instantaneous point mass source solutions are also

required. Returning to (4.43) and letting

§(x-&)8(t-7) (4.633)

€
n

£f=0, (4.63b)
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leads to the simple result that

2
cx0ew 2oy Doh (4.64)
A p o2 9xy9x; 2 Dt ) :
0% o

The corresponding velocity can be determined most easily by returning to

equations (4.40a) and (4.41), and eliminating the pressure. This produces

82 (x+2p) Po 82w D<2>w
g i— + L2hs 2 ) - L & X 5(x-8)8(t-t) =0, (4.65)
Xiaxi p C2 Dt axiaxi c2 2 C2
o~o o) o
which when compared with (4.46), establishes
= X
W 2 BU (4.66)
Co

Additionally, since (4.40b) is independent of P, W, and v, the vortical
component of velocity

awk
®ik ax, = 0 * (4.67)

J

and the velocity field becomes becomes

o8
u; = r U (4.68)
C2 axi
o
Bquations (4.64) and (4.68), along with

comprise the instantaneous unit mass source fundamental solution.
The final item that is required involves the response to an

instantaneous unit heat source. In this case,

V=0 (4.70a)
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Ei =0 ‘ (4.70b)

§ = 8(x-8)8(t-v) . (4.70cC)

Then, from (4.37),

L]
o

and 6, is simply the solution to the convective heat equation.
It is convenient, at this point to collect the fundamental point

force, mass source, and heat source solutions into a tensor ggﬁ, where for

the Dirac delta functions in the infinite space,

Yp = 923% (4.72)
and

Ug = {u; u, p 01T (4.73a)

- 1, v 0T, (4.73b)

The superscript U denotes that g[;B is a moving medium solution.

Furthermore, the subscripts e« and B vary from one to four, while in the
following i and j vary from one to two. Additionally, the subscript p
always takes the value three and the subscript 6 is four. Then,

U U Ul
945 9ip Yie
925 = ggj ggp gge . (4.74)

u U U
L 985 Yep Yoo

The individual components of gy are detailed in Appendix C. It should be

emphasized that these are moving force and source fundamental solutions
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and, as such, are quite involved. The explicit form of these kernels have
recently been obtained, however the accurate numerical evaluation of the
functions involved at high reference velocities (Ui) still requires some
additional effort.

It may be recalled that in previous work (e.g., Dargush et al, 1987;
Dargush and Banerjee, 1988c,1989), all of the convective terms were brought
to the right-hand side and included as body forces and sources. The
corresponding fundamental solutions then involve instantaneous stationary
point forces and sources acting in a stationary medium. These solutions
remain time~dependent, but take a much simpler form than the convective
Green's functions presented in Appendix C. Unfortunately, except in the
low to medium Reynolds number range, the stationary fundamental solutions
do not contain enough of the physics of the problem to produce numerical
solutions. (This will be evident in a number of examples in Section 4.7.)
On the other hand, the convective fundamental solutions do capture the
nature of high velocity flows, although this is not at all obwvious due to
the ocomplicated form of the convective kernels. However, the simplified
fundamental solution highlighted in Section 4.3.4 for convective heat

transfer will provide some additional insight.

4.3.2 Incompressible Thermoviscous Flow

In the incompressible case, the pressure becomes superfluous and is no
longer needed as a primary variable. Additionally, the dilational
component of the velocity vanishes. As a result, the convective

fundamental solution for incompressible themmoviscous flow can be written

U =qo F (4.75)

(4.76a)

[~
1]
p—
[=
-
[#]
N
[ -]
L
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= T
fB-{f1 fz &, (4.76b)

with a and B varying from one to three, and the subscript ¢ set to three.
The kernel g, is detailed in Appendix D. Once again, the development of
techniques for the numerical evaluation of these kernels is still underway.
Meanwhile, the stationary medium fundamental solutions, pertaining to

continuous point forces and sources, are defined in Appendix E.

4.3.3 Incompressible Viscous Flow

Under isothermal conditions, the temperature is not required as an
independent variable and the corresponding degree of freedom can be
eliminated. The convective incompressible viscous flow fundamental

solution is then equivalent to g[ijj from Appendix D.

4.3.4 Convective Heat Transfer

The final case of convective heat transfer will be examined in some
detail. Aswill be seen, the fundamental solutions are manageable, yet
still reflect several aspects of compressible thermoviscous flow. To
begin, the reference velocity Uy is introduced to (4.33) to modify the

convective derivatives. Thus, (4.33) becomes

DOG 2

FR)
PC, 5e — K Pxpox, =¢ (4.75)
1
where, again,
D
0 _3 9
ot “at * Ui 3 (4.76)

The fundamental solution, gU, due to an instantaneous point source,

obtained from
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U
pc 2o -k o%q” = 8(x-£)8(t-1) (4.77)
v Dt 3x;0%; ’ .

is a well-known result. A slight generalization of the solution presented

in Carslaw and Jaeger (1947) produces, in two-dimensions,

u ! e—%/4ct'
g (Xiot;gi)t) = 4ﬂk t, (4.78)
where
k
c =X (4.79a)
PCy
t' =t (4.79b)
RS = (y;-U;t") (y;-U;t") (4.75¢)
Yy = %3785 - (4.794)

The steady-state response can be obtained from (4.78) by integrating

over t. Thus,

-R./4ct’
cY( ) = -1 _reRU a (4.80)
) Tk )y T 9 '
which simplifies to
u eUiyi/2C
where
= 1/2 ,
1/2

and K, is the modified Bessel function of the second kind of order zero.
It is of interest to compare (4.81) with its stationary counterpart. Of

course, for a heat source in a stationary medium, the fundamental solution
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is just the potential flow kernel

In R
2nk

Glx. ;) = (4.83)

Figure 4.1 provides a comparison of the two kernels, 6" and G, for a source
point at the origin. The kernel values are plotted for field points along
the x,-axis, and in the convective case for a medium moving uniformly in
the xl-direction with a velocity of ten. Notice, in particular, that the
static response is symmetric about the source point, however the convective
response is magnified ahead of the source point, but greatly reduced behind
it. This latter phenomenon is just the Doppler effect applied to moving
heat sources. Thus, as illustrated for points on the positive x,-axis in
Figure 4.1, the strength of an oncoming source appears to be intensified.
On the other hand, the source has already passed the points on the negative
X,-axis, and a quick silencing is apparent.

Interestingly, from another vantage point, the convective Green’s
function GY can be viewed as the boundary element counterpart of the so-
called 'upwinding’ techniques that are required in finite difference and
finite element approaches to convective problems. The distinguishing
feature is that GU embodies an analytical form of upwinding, while the
other two methods use ad hoc representations. As a result, a boundary
element formulation based upon GY will have a significant advantage for
convection-dominated problems.

The transient convective diffusion kernel can also be formed by
integrating (4.78), but this time from zero to t. The result is a two-

dimensional fundamental solution, which can be written in series form as,

" Ui¥i/2¢ = (-u,u;t/40)" R2
G (Xi.t: Ei.O) = Tank T En+1 (m) (4.84)

n=0
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where En+1 is the exponential integral of order n+l. Figure 4.2 compares
the steady-state kernel (4.81) with this transient kernel for several
values of t. Note that the Doppler effect is still quite pronounced.
Before closing this section on fundamental solutions, it should be
emphasized that behavior similar to that displayed in (4.81) and (4.84)
will be included in the convective thermoviscous kernels, since the scalar
Green's function GY provides the basis for the development of the more
complicated fundamental solutions. 1In fact, for the incompressible
theories, GU is the only scalar Green’s function that is needed. (More
precisely, a change in material constants is required to produce uwy of
equation (4.58) from GU.) However, for compressible flow a second scalar
fundamental solution, B;, comes into play for the dilatational component of
the flow. As mentioned previously, this latter solution involves the
propagation of a damped wave, which at high velocities produces shock

phenomena.

4.4 Integral Representations
4.4.1 Compressible Thermoviscous Flow

The desired integral representation for general compressible

thermoviscous flow can be derived directly from the set of governing

differential equations. First, however, a convenient differential operator

notation is introduced. As a result, equations (4.37) are rewritten as
Wu, +£ =0 (4.85)
af"p a ’ .

where, again

T (4.73a)

o
h--]
fl
——
(=1
-t
o
[~
o)
e

£, =t E v 8T (4.73b)
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U U U
FLIJ Lip Lie
U U U U
v - ,
o Iy ILpp Ipe
U U U
| Lgj Lep Leo.
U _ _o )
Lij = B3P0 e * M) Fxox
v _ 2
Lip - ax,
U _
Lig =0
U 2
ij = =~ Po 3x.
3
U Do

g
|

Lge =0
Lgj = O
Lgp = 0

Then, using LEB to operate on the fundamental solution ggp of

produces

i U

apOpy * Bay(X-0)8(E-T) = 0 .
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(4.86)

(4.87a)

(4.87b)

(4.87¢c)

(4.87d)

(4.87e)

(4.87€)

(4.87g)

(4.87h)

(4.871)

(4.74)

(4.88)



In (4.88), the subscript v also varies from one to four and Kronecker’s
delta function has been generalized in an obvious manner.

The governing equations (4.84) must, of course, hold for all points of
the flow region at every instant of time. Therefore, the lefthand side of
(4.85) multiplied by an arbitrary function §a7, and integrated over time

and space must remain equal to zero. That is,

~ U _
¢ GyyrLaplp j Igay DgugE)avar = o, (4.89)

where the standard notation for the inner product of two functions has been
introduced. Returning to the explicit forms of the differential operators,

this becomes

Iofv{giy -pouy = PoUplly,m + (4wl g + WUy oy — U 4+ £

* 95y ["Polp,m = Yp ~ Uplip,m * £p!

* 994 [-pocqu - pochmue.m + kue'm + feldth =0, (4.90)

in which commas represent spatial derivatives and superposed dots are
partial derivatives with respect to time. Next, the divergence theorem can
be applied, repeatedly, to the applicable terms in (4.90) to transfer
spatial, as well as, temporal derivatives from uB to {j’ay, As a result,

equations (4.90) are transformed into

mt
“ Ggyta - Foylgldsdc + f J, agatavas - [ 15, 081 1aw
* Iofv{["oan * poUndiy,m * A03ny mi * ¥y, m + Podpy, 1794

Y lGm * 9y * Undpy,miYp
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+ lpocvé% + poCVUmae,Y'm + k§97’m]u9}dVd-c =0, (4.91)
where

ti = Aup o0y o+ ”(U*m, i+ui.m)nm = PoUmbi M (4.92a)
tp = - Umu‘p% (4.92b)
te = k“o,m"m = PoCylnbely (4.92¢)
fiy = kijm,mni + zuaiy.mnm + poij'pyni (4.93a)
fpy = 'g'wni (4,93b)
fey = kaey,m“m (4.93¢c)
ug = pguy  PoYy Uy pocvue}T (4.94)

with ny defined as the unit normal to the surface S at X. To complete the
derivation of the integral equation for any point & interior to S at time
t, the last volume integral appearing in (4.91) must be reduced to

- uy(c.t). This is accomplished, if
or after making use of the properties of the delta function

~U ~ -
LgaTday * 85 8(X-8)8(t-1) = 0, (4.96)

where the operator ﬁga has components

D ' 2 2
=0 o 9
Ly, = 8.,p. 7= + (A+p) 70— + 8..p 7— (4,.97a)
ji ji¥o Dt axjaxi 31T ax %y
e 2 (4.97b)
jp = Po 9%, :
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Ege =0 (4.97¢)

Egi - 321 (4.97d)

igp - gg (4.97e)

Ego =0 (4.97£)

ig; = 0 (4.97g)

f%p =0 (4.97h)
D, 52

~U - - »
Formally, ﬂga is called the adjoint of the original compressible
thermoviscous differential operator LHB, and 'g"aY defined by (4.95) is the
adjoint Green’s function. This adjoint Green’s function can be obtained
simply by suitably transposing the fundamental solution presented in

Section 4.3.1. That is,

Gy Kotits) = g (ETKL) (4.98)

Substituting (4.98) into (4.91) produces the desired integral equation,

_ (1l op 50 U
u (g,t) = js[gya'ta £),4u,1dS + jv[gya'fa]dv (4.99)

in which, for simplicity, the initial conditions have been assumed zero.
The ® in (4.99) once again symbolizes a Riemann convolution integral.
Notice that this integral equation for compressible thermoviscous flow
has a similar formm to that for thermoelasticity as shown in equation (3.2).
However, in (4.99), a volume integral is retained to include, in

particular, the nonlinear body force terms.
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4.4.2 Incompressible Viscous Flow

A derivation of the integral representation for the incompressible
flow theories would follow the same lines as that just presented, and
therefore, will not be repeated. In fact, a generalized integral equation
identical to (4.99) would result. The only differences are in the explicit
form of the fundamental solutions gsa and in the corresponding definitions
of the functions £ and t,.

As may be recalled from (4.35), a portion of the convective effects
are included in the body forces fa. Assuming for the moment that this is
the only non-zero component of f o then the volume integral in (4.99) can
be rewritten as

au

jv[ oE J - - jv[gU o (4.100)
j

Applying the divergence theorem to the right-hand side of (4.100) produces

[v[ a*PY3Y%, § ]dV j Ya‘pua i J]dS f Iya,5*PYa j]dv , (4.101)

since, for the incompressible case, u. . is identically zero. Finally,

J.3]
equation (4.99) becomes
u(e,t) = JS[QV“.t& Ya'ua]ds I Iya, 5*PUal (4.102)
where
tt'l = ta - Puau]nj . (4.103)

Notice, in particular, that (4.102) no longer involves velocity gradients.
Consequently, from a computational standpoint, (4.102) is an attractive
alternative to (4.99).

A similar integral formulation can also be developed by utilizing the

stationary medium fundamental solutions 9yar In this case, the reference
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velocity U; may still be used, but now the entire convective derivative

must be included in the body forces. As a result, the integral equation is

written

u (g,t) = _[S[gya-t;'—fn:ua}ds " j'v[gm,j.puavj]dv
in which

t('!' =t, - pUGV4Ny

and vy is the total velocity.

4.4.3 Convective Heat Transfer
In this simplest case, equations (4.99) reduce to

0t.,t) = [ [-glsqseUs0las + | 1g"B1av
S v

where gU is defined by (4.78) and

U _ _,.0
£ = kg

q = k&, n. + pc U on, .
Mearwhile, under steady conditions, equation (4.106) simplifies to
oz,t) = [ -Pger¥elas + | (¢"B1av
s v
in which
U . U
F kG,mnm
with Y given by (4.81).

4.5 Numerical Implementation

(4.104)

(4.106)

(4.107)

(4,108)

(4.109)

(4.110)

The numerical treatment of the equations in thermoviscous fluid

dynamics follows very closely that described in Section 3 for transient
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thermal stress analysis. However, now due to the volume integral appearing
in (4.99), (4.102) or (4.104), the interior must be subdivided into cells.
The geometry of each cell is defined by nodal points and quadratic shape
functions. In two-dimensions, six and eight-noded cells are available.
Mearwhile, either a linear or quadratic variation can be employed for the
functional representation. Details of the techniques used for cell
integration can be found in Mustoe (1984).

Just as for the thermoelastic case, a set of algebraic equations can
be developed by writing the integral equation at each global node.
However, now interior, as well as, boundary nodes must be included, and the
resulting equations become highly nonlinear due to the convective terms.
After the collocation process is complete, the final system of equations

can be expressed in matrix form as

P = BPx + Po® - P -8y = 0 (4.111a)
for boundary points, and as

g¥x,w) =u + A% +D%° - %% - B%Y =0 (4.111b)

for interior cell points, where the vectors ¢° and t° have components

defined by
0’?5 = puiuB
o_ o
tg = ojpny

at each boundary and interior point. Once again x and y are the known and
unknown boundary quantities, while u is the interior velocity vector, and
the matrices A, B, D and G are developed from the integrals of the kernel

functions appearing in (4.99), (4.102) or (4.104). At present, only
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(4.104) has been implemented as a segment of the general purpose boundary
element program, GP-BEST.

Initially, an iterative algorithm, along the lines of those used for
BEM elastoplasticity, was employed to solve (4.111). However, convergence
is usually achieved only at low Reynolds number. More generally, when
employing the stationary fundamental solutions, the interior equations must
be brought into the system matrix along with the boundary equations, and a
full or modified Newton-Raphson algorithm must be utilized to obtain
solutions at moderate or high Reynolds number. Symbolically, at each

iteration m,

R (ax)™ P 6, u™

ox au
= - (4.112)
ag” adt (Au)™ U, gy
X Ju J g ’
where
AL o oy (ax)™

gl u® o+ (AT

and the derivatives on the lefthand side of (4.112) are evaluated at
(x™,u™. In the numerical implementation, the above equations are arranged
to form a block banded system matrix for efficient multi-region solutions.
It is anticipated that once the convective viscous kernels are
implemented somewhat different solution strategies will be more
appropriate. For example, at high velocities the system matrix will become
sparse. In that case, bandwidth minimization is required and iterative

equation solvers become quite attractive.
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4.6 Coupling of Solid and Fluid

The coupling of the solid and fluid phases is most readily
accommodated via the concept of the generic modeling region. Thus, the
fluid-structure interface is nothing more than a boundary between two
GMR’s. In the simplest case, temperature, flux, and tracf:ions are matched
across the fluid-structure interface, while a temporal approximation is
introduced to relate boundary displacements of the solid to the
corresponding fluid velocities. However, additional sophistication is
possible. For example, thermal resistance can be introduced to model the

effects of coatings.

4.7 Examples
4.7.1 Parallel Flow

The two-dimensional parallel flow in a duct is a good verification
problem for incompressible computational fluid dynamics codes. It has a
simple analytical solution which can be used to test many aspects of
programs. The convective terms disappear in the nonlinear solution, hence
linear and nonlinear velocity profiles should be identical (Tadmor and
Gogos, 1977).

As an example of a typical version of this problem, Figure 4.3
illustrates a 10 cell mesh with two regions. This simulates a plate
sliding along the top of the fluid in pure shear. Pure shear tractions are
applied at inlet and exit. Viscosity is unity and density is incremented
to increase the effect of the convective terms in the equations. Newton
iteration is used to converge to the nonlinear solution. It should be
noted that this problem does not require this degree of refinement. This
model merely tests many aspects of the computer program.

Figure 4.4 illustrates the linear velocity profile at the exit of the

region. For density below 1000 the linear profile is reproduced exactly.
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4.7.2 Driven Cavity
The two-dimensional driven cavity has become the standard test problem

for incompressible computational fluid dynamics codes. In a way, this is
unfortunate because of the ambiguities in the specification of the boundary
conditions. However, numerous results are available for comparison
purposes.

The incompressible fluid of uniform viscosity is confined within a
unit square region. The fluid velocities on the left, right and bottom
sides are fixed at zero, while a uniform non-zero velocity is specified in
the x-direction along the top edge. Thus, in the top corners, the x-
velocity is not clearly defined. To alleviate this difficulty in the
present analysis, the magnitude of this velocity component is tapered to
zero at the corners.

Results are presented for the 144 cell boundary element model shown in
Figure 4.5. WNotice that a higher level of refinement is used near the
edges. Spatial plots of the resulting velocity vectors are displayed in
Figures 4.6, 4.7, and 4.8 for Reynolds numbers (Re) of 100, 400 and 1000,
respectively. WNotice that, in particular, the shift of the vortical center
follows that described by Burggraf (1966) in his classic paper. A more
quantitative examination of the results can be found in Figure 4.9, where
the horizontal velocities on the vertical centerline obtained from the
present analysis (i.e., GP-BEST results) are compared to those of Ghia et
al. (1982). It is assumed that the latter solutions are quite accurate
since the authors employed a 129 by 129 finite difference grid. It is
apparent, from the figure, that the present boundary element model has some
difficulty in capturing the sharp knee of the curve at Re = 400. This
becomes accentuated as the Reynolds number increases, and consequently, a

finer mesh is required. It should be noted that the simple iterative
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algorithm fails to converge much beyond Re = 100. Beyond that range the
use of a Newton-Raphson type algorithm is imperative.

In order to obtain more accurate solutions at higher Reynolds number,
the refined four region 324-cell boundary element model shown in Figure
4.10 was also analyzed. This provides a significant improvement in the
results. For example, at Re = 1000, as seen from Figure 4.11, the
secondary vortex in the lower right-hand corner is clearly visible.
Additionally, the resulting horizontal velocities are compared to Ghia et
al (1982) in Figure 4.12. Now, even the solution at Re=1000 is in

excellent agreement.

4.7.3 Converging Channel

The two-dimensional incompressible flow through a converging channel
also possesses a well known analytical solution which is purely radial
(Millsaps and Pohlhausen, 1953). A comprehensive finite element study of
this problem has been made by Gartling, et al (1977).

The boundary element model is shown in Figure 4.13. The mesh contains
96 cells and is divided into two regions. The boundary conditions were
modeled using an exact specification of the boundary conditions appearing
in the analytical solution (Fig. 4.13). Viscosity is unity and tractions
and density are incremented to reach higher Reynolds numbers. The Reynolds
number for this problem is defined as

Re = M

where V,(R;) is the maximum velocity in the region, which is -24.0 for the
problem solved here.
Figure 4.14 illustrates the results for two Reynolds numbers,

indicating good accuracy along the entire width of the channel. Not only
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are the velocities accurate, but the pressures and tractions are very
accurate also.

It has been observed that finite element versions of this problem have
several peculiarities which prevent the analytical solution from being
reproduced. First of all, velocities are often specified at the inlet and
at the wall and centerline, ambiguous boundary condition specification
results. Also, typically a parabolic "’fully developed' velocity profile
is often specified at the inlet. However, the nonlinear solution has a
flattened velocity distribution across the width of the channel (see Fig.
4.14). Hence, the analytical solution cannot be reproduced exactly if the
*fully developed'’ profile is specified at the inlet. Also, the finite
element modelers of this problem usually leave out the traction
distribution at the exit and specify zero tractions there. This also gives
rise to non-radial flow.

The reason for so much interest in the converging flow problem is that
it is one of the few problems possessing an analytical solution. However,
by specifying a model which does not correspond to this problem, as in the
finite element case, one cannot accurately compare results to the
analytical solution. Any such comparisons are merely qualitative. In this
light, the boundary element model here has utilized an exact model of the
boundary conditions appearing in the analytical solution. This way an

accurate and meaningful comparison can be made.

4.7.4 Flow Over a Cylinder

Next, an example of unconfined flow around an obstacle is considered.
In particular, the oft-studied case of a unit diameter circular cylinder is
examined. The boundary element mesh is illustrated in Figure 4.15. Notice

that three distinct regions are evident. The smallest region, labelled
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GMR1, represents a thermoelastic thick-walled cylinder. Only the surface
of the solid is discretized. The next region, GMR2, models a thermoviscous
fluid in the vicinity of the cylinder. In GMR2 volume cells are required
due to convective body forces. However, sufficiently remote from the
cylinder, these body forces become negligible and once again a boundary-
only region, in this case GMR3, is valid.

Steady-state velocity vector plots are displayed in Figures 4.16 and
4.17 for Re = 20 and 40, respectively. The recirculating zone, behind the
cylinder, is clearly visible.

Additionally, the problem was extended to include thermal effects.
The temperature of the fluid at inlet was specified as 1000°C, while that
at the inner surface of the hollow cylinder was maintained at 0°C. The
effective heat ﬁransfer coefficient between the fluid and solid can then be
obtained from the resulting temperature and flux at the outer surface of
the cylinder. The distribution of the nondimensional Nusselt number (Nu)
around the circumference is plotted in Figure 4.18. These curves agree, at
least, qualitatively with the experimental results of Eckert and Soehngen
(1952). Of course, if the purpose of the analysis is to determine the
temperature and stress in the solid, then there is really no need to
compute the heat transfer coefficients. The desired solid temperatures and

stresses come directly out of the analysis.

4.7.5 Flow Over an Airfoil

As a final example, the themoviscous flow over a NACA 0018 airfoil is
considered. The boundary element model shown in Figure 4.19 once again
utilizes symmetry and employs the multiregion concept with cells confined
to the vicinity of the airfoil. The airfoil is heated externally by a hot
gas, flowing from left to right, at unit temperature, and cooled to zero on
the surface of an internal cooling hole. The conductivity of the airfoil
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is set to one hundred times that of the hot gas, while unit values are
assumed for the fluid density and viscosity.

The resulting steady-state velocity distribution at Re = 150 is
displayed in Figure 4.20, while Figure 4.21 details the velocity profile
just ahead of the leading edge of the blade. It should be noted that 1lift
and drag can easily be calculated, since during the analysis, tractions are
determined all along the blade surface. WNext, shaded temperature contour
plots of the region surrounding the airfoil are presented for Re = 10 and
150 in Figure 4.22. In the latter diagram, the hot regions are black,
while lower temperature locations appear white. The effects of convection
are visible downstream of the airfoil. Lastly, the surface temperature of
the airfoil is plotted in Figure 4.23. WNotice that the overall temperature
increases with Reynolds number. 1In this particular case, the distribution
is strongly influenced by the location of the single internal cooling hole.

When the Reynolds number is elevated further, the convective terms
begin to dominate. In this flow regime, the physics of the problem demands
that convective effects must be incorporated in the kernel functions. This
is, in fact, true for all of the viscous flow examples presented thus far.
As mentioned earlier, the inclusion of convection in the kernel functions
is analogous to the upwinding techniques that are required in finite
difference and finite element analyses.

The development and numerical verification of these convective
thermoviscous flow kernels is now underway. However, the thermal portion
of the new kernels, detailed in Section 4.3.4 and 4.4.3, has been
implemented and provides some interesting results.

As an illustrative example, a convective heat transfer analysis was
conducted for a pair of NACA 0018 airfoils in a uniform flow field. The

boundary element model of the airfoils is shown in Fiqure 4.24. The hot

69



fluid once again flows from left to right, while the airfoils are cooled on
their inner surfaces. It should be emphasized that with the assumption of
a uniform fluid velocity, the problem permits a boundary-only analysis.
Thus, the ‘only mesh that is needed is that displayed in Figure 4.24.
However, a number of interior points were added in the flow field for post-
processing purposes.

Figure 4.25 depicts the temperature distribution in the fluid
surrounding the airfoils at a Peclet (Pe) number of ten, where

with fluid velocity U, chord length 1, and thermal diffusivity of the fluid
¢. Meanwhile, Figures 4.26 and 4.27 present the temperature field for
Pe=100 and 1000, respectively. Strong convective effects are evident at
the higher Peclet numbers. Finally, in Figures 4.28 and 4.29 the angle of
attack is modified to 10° and 20° while maintaining Pe=1000.

It should be reiterated that the results shown in Figures 4.25-4.29
are based on a uniform flow field. Thus, the effects of viscosity have
been ignored. However, the new convective themmoviscous kernels, when they
are available, will have the same character as those for convective heat
transfer, and hence, should provide a means for obtaining accurate high

velocity solutions.
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FIGURE 4.1

CONVECTIVE-DIFFUSION KERMELS
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FIGURE 4.3

PARALLEL FLOW - BOUNDARY ELEMENT MODEL
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FIGURE 4.10

DRIVEN CAVITY - FOUR REGION MODEL
Boundary Element Model

GMR3

GMR4

FIGURE 4.11

DRIVEN CAVITY - FOUR REGION MODEL
Lower Right Corner at Re = 1000
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FIGURE 4.13

‘CONVERGING CHANNEL - PROBLEM DEFINITION
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FIGURE 4.16

FLOW AROUND A CYLINDER
Re = 20
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FIGURE 4.20

VELOCITY DISTRIBUTION AT RE = 150
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FIGURE 4.22

FLUID TEMPERATURE CONTOURS

Re = 150
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5. SOMWMARY

Significant advancements have been made in the last twelve months
toward the development of an integrated boundary element method for hot
fluid-structure interaction. For the solids portion of the problem, the
formulation is well developed. The boundary-only time domain thermoelastic
formulation, detailed in Section 3 and Appendix B, was completed in the
previous year. However, a number of enhancements have been incorporated to
make the numerical implementation more efficient, more accurate, and to
increase its applicability. For example, regarding computational aspects,
full advantage is now taken of the uncoupled nature of the thermoelastic
theory, so that convolution is only carried out on the temperature and flux
related quantities. Additionally, for time steps beyond the first, a much
reduced level of numerical integration is employed to evaluate the
completely non-singular kernel functions. Meanwhile, extensions of the
basic formulations have been made to include several practical facilities,
such as time-dependent ambient temperatures, thermal resistance between
regions to simulate coatings and air gaps, and the introduction of region-
by-region reference temperatures. The resulting code has also gone through
another round of verification testing, which has greatly improved its
reliability.

The primary emphasis of the work performed under this grant has, of
course, been directed toward the fluid, since boundary element applications
to fluids are at a much less developed state. Considerable progress has
been made on two fronts. The first major area involves improvements and
extensions of the incompressible thermoviscous formulation originally
developed last year. During the past twelve months, the accuracy and
efficiency of the numerical integration has been significantly upgraded,

the volume integrals have been rewritten to eliminate the need for
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computation of velocity gradients, reference velocities and temperatures
have been introduced on a region-by-region basis, and a Newton-Raphson
algorithm has been developed to solve the highly nonlinear set of
equations. . The result, as is evident from the examples of Section 4, is an
accurate general purpose boundary element approach to problems of
thermoviscous flow in the low to medium Reynolds number range. As such,
this development represents the first of its kind for this class of
problems.

However, during the course of this work, it also became evident that
the stationary media fundamental solutions of Appendix E do not contain
enough of the physics of the problem at high Reynolds number. Moving media
fundamental solutions and integral formulations are imperative for higher
speed flows. Since these fundamental solutions do not exist in the
literature, considerable effort has been expended toward their derivation.
Approximate forms have been obtained for compressible thermoviscous flow,
and are presented in Section 4.3. It should be emphasized that these
convective solutions contain an analytical representation of upwinding and,
for compressible flow, shock. The development of techniques for the
numerical evaluation of the convective kernels is now underway. Mearwhile,
the thermal portion pertaining to convective heat transfer, in a known flow
field, has been completely implemented. This new formulation not only has
produced some interesting results, but also provides considerable optimism
for the success of the convective media approach to high speed

themoviscous flow.
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6.

WORKPLAN FOR THE NEXT YEAR

Based upon the experiences of this past year, future emphasis will

naturally be placed upon the convective media approach, although some

ongoing work on the transient stationary media algorithm will be completed.

The following rather ambitious set of tasks are planned, in approximate

chronological order, for the period November 1988 to November 1989:

1,

Complete development of numerical techniques (e.g., rational
approximations, series representations) for the evaluation of the
convective compressible thermoviscous kernels.

Implement and validate the transient convective heat transfer
fomulation.

Complete the investigation of transient incompressible flow using the
stationary media approach.

Implement and validate the new convective incompressible flow kernels.
Develop more efficient solution algorithms (e.g., iteration methods)
and integration schemes for high Re flow.

Implement and validate convective compressible flow kernels.
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APPENDIX B - KERNFLS FOR THERMOELASTICITY

This appendix contains the detailed presentations of all the kernel
functions utilized in the formulations contained in Section 3. Two-
dimensional (plane strain) kernels are provided, based upon continuous
source and force fundamental solutions. For time-dependent uncoupled
quasistatic thermoelasticity the following relationships must be used to
determine the proper form of the functions required in the boundary element

discretization. That is,

G“B(x-g)

a GaB (X-&,nAt) for n=1

c;“B (X-%)

a

GQB(X'C.Mt) = GGB(X—Ep(n—l)At) fOI ni »

with similar expressions holding for all the remaining kernels. In the

specification of these kernels below, the arquments (X-&,t) are assumed.

The indices

i,j.k,1 vary from 1 to 4
a,B vary from 1 to (d+1)

] equals d+1

where d is the dimensionality of the problem. Additionally,

Xy coordinates of integration point
3] coordinates of field point

2
Yy = %% r" = Yi¥y .

For the displacement kernel,

1 1 Yi¥5
G.. = — [« ) - (8..) (3-4v)]lnr ]
1] 81 u(1-v) !:2 1
Gjg = 0
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3

06

whereas,

Fij

r B .=
2 (k(x+2u)) [ g4n) ]

1 1 -
= o (E) [ gs(n) ]

for the traction kernel,

2y;Y4ygh
1 1 (2] k k)

= anr (=) 3

yin
+ (—}—i) (1-2v) 1

_1 B Yi¥ehg -
“& G L) L

1 Yk -
Inr [ (-;——) fgn) 1.

In the above,

El(z)

Iy 4

(ct)1/2

]
“— 8
o

i

-

o
1

B 50 S S L N
r

- (n)Ex(n) ]
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gqln)

ggln)

f6(")

f7(n)

Es(n)

2

T 1
hyw) By )
2 2

o2
2
hl(n)
- 2
n
hl(“) E1(4 )
2 Y T2
_2
e /4 .

For the interior stress kernels,

3G 3G PYe
E ;. = va .. Bl +n (77— pi -—El) Bd:: G
Bij — 1-2v ®ij 13 agj I ij “pe
aF oF aF
= 2uy __E_ B3, _
Dpij = 125 83 3T * ¢ G * an ) - i e
where
Cig 11 o S Bay
agk 8nr p(1-v) r3 r r
544¥k
+ (—%—) {((3-4v) ]
3G, . : h, E
o3 1 By ¥ & e | _1
A Gy [ ¢ 5 ) ) - (By) G5+ 57} ]
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aFij = 1 1 [ _(4YinYkYInl _ yiyink _ 8.ly.y]n]
9%y 4np? (1-V) 4 2 2
5 Yiyyn 28;.y,¥Y40 2.y, N
e L. L6 o S-Sty G L4 20 b 1Yk _
— 2 VE () = 2 Bijnk + ——J-rz siknj)fz(“)

, ey
2

r ﬁjkni)fs(n) 1

oF ..
. L By

AN T .2
7kl 1 - e n/4
agk " 4nr A+2p 3 )(2h1 e }

%y, Yok, Sakam

-7 r T

yhyd 1 .

=2
fz(ﬂ) = 1-2v
f£5(n) = 1-2v
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APPENDIX C - FUNDAMENTAL SOLUTION FOR CONVECTIVE OCOMPRESSIBLE THERMOVISCOUS
FLOW

52
v _yOezn 9Py L L j
913 2.2 ax;0x;

ax ax (By-ay)
- Po%o

32
- eiklelrnj m (p-mu"ﬂu) kf

v %y
%3 " axg
U .
gej =0
oo
ip Cg axi

Ty = -
PP 2 0x,0x 2 Dt
PoCo A
U _
gep = 0
U _
gie 0
U _
gpg =0
U
90 = Oy
where
5(t-<)
, € RU/4C t’
“U 4np t’
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. e_RU/4ct
9U 4nk t'
co [ nt’ n ]
B, ==—1| (1 + T=Hc t'-R) - L s(c.t'-R)
U 2R —R2 o] RU cg o] "u
cr = & c = ¥—
Po PoCy
_ A+2p
L
o
t' = t-=<
R = (y4-Ust) (y; ~U;t")
Yi =Xy
= 2. ,2 _
R - c2t Rfj
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APPENDIX D ~ FUNDAMENTAL SOLOTION FOR CONVECTIVE INCOMPRESSIBLE
THERMOVISCOUS FLOW

t Ry
U bt}
gij - eikle]mj Io(po - Po) dx
U _
ggj =0
U _
gie (1]
U _
990 ~ Oy
where
s(t-<)
== "3 Inr
; e—RU/4c't'
Y = 4nmp t’
X e-RU/4ct'
"k~ t
cr = 4 c = K—
Po PoCy
t' =t

=40

= (Yi‘Uit ) (yi. 'Uit' )

Yi = %78
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APPENDIX E - KERNELS FOR STATTONARY INCOMPRESSIBLE THERMOVISCOUS FLOW
This appendix contains details of the time-dependent incompressible

kernels, based upon stationary media, necessary for the integral

formulations of Section 4. WNotation is consistent with that defined in

Appendix B.

For the generalized velocity kernels,

2
5
1 AL sl(e) E,(3)
Gij-4ﬂu[(——1r2){sl(s}-(aj){ — - =5 |
Gig = 0
Ggs = 0
2
E, (1)

1 1 1°4
Goo =3 @ [ 35—
whereas, for the generalized traction kernel,

n. Y.
[ ) e Py, LR o ety

ij = 2nr
y.n 2y;YYpn o2
- A mwr-spy - () st ]
r
Fig =0
Fgs = 0
Yk k -
_ e ™M /4
Foo = 21rr [ ]
In the above,
A S
S
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o]
]
-

E(z>=j e &
Mearwhile, for the interior strain rates,

8.1V 8.1y 2y.ysy _.2
) sy - (D s+ EHEE st 4

r

ijk = 4nr ,,’ [- 1)

+

§,. 2
ilyk -g /4_
(== (2e 51}]

Y1Y3YkYm'&n - By<¥i¥lly  Yi¥D4 Yij"i -
Dijk= z[ )Gy - | 2 M) ’gz"(r )93
. (Yin“k . 85kY ¥ . siijYm%)g
2 2 2 1
+ (bljnk + 51kn3)92 (sjkni)gs ]
where
2
gy = 454 - 2078 /4
2
gz = -sl + e_e /4

109



2 2
= 245, - 16e7" /4 - (Zee /4

L}

2 2 2
N -e /4 , e -g“/4
"481 + re + 2 e

2
4s, - 27 /4 _ amcey.
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